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Abstract—Neural audio codecs provide a powerful tool for
compressing audio signals into discrete codec representations.
This compact discrete representation has made it possible to
successfully apply a natural language processing (NLP) model
to various audio and speech processing tasks, including text-
to-speech (e.g., VALL-E, VALL-E X) and multimodal audio-
text generation (e.g., LauraGPT, VioLA). While these models
excel at handling sequential data like text and speech, their
potential for processing non-sequential data, such as images,
remains unexplored. In this paper, we introduce PixVoxLM, a
simple and efficient end-to-end framework that combines vision-
language models with neural audio codecs to tackle the Image-
to-Speech (I2S) problem. Experiments on the Flickr8k dataset
demonstrate that PixVoxLM delivers promising results compared
to existing I2S methods. Furthermore, this research is the first to
explore a new capability: visual-guided speech completion in I2S
model, paving the way for new practical applications in everyday
communication, such as speech prompt-based instruction.

Index Terms—Spoken Image Description, Vision-Codec Lan-
guage Models, Neural audio codecs

I. INTRODUCTION

Large language models like ChatGPT [1] and LLaMA
[2] have brought breakthroughs to the field of NLP. These
impressive advances have been driven by the application of the
Transformer with attention mechanisms [3], a powerful model
for tasks such as text understanding and text generation.

The success of generative models in NLP has also extended
to various speech processing tasks. Specifically, by using
quantization models like Encodec [4] to convert continuous
speech signals into discrete codes and then reconstruct them,
many traditional speech processing pipelines have been re-
defined as conditional codec language modeling problems.
For example, while traditional Text-to-Speech (TTS) models
use Mel-spectrograms as intermediate representations, VALL-
E [5] and VALL-E X [6] offer an innovative solution by using
generative models to produce discrete codes from phonemes
and then convert these discrete codes back into speech using
the Encodec model (phoneme 7→ discrete code 7→ waveform).
Furthermore, unified decoder models like VioLA [7] and
LauraGPT [8] have extended this concept further by perform-

ing multiple tasks such as audio generation, speech generation,
and speech translation.

While these models excel in processing sequential inputs
such as text or speech, the potential of neural audio codecs
for handling non-sequential data, like images, remains un-
derexplored. This limitation is significant, especially when
considering the inherently multimodal nature of human com-
munication, which involves not only text and speech but also
visual information. Therefore, the integration of visual data
processing with models is essential. Several studies have made
significant advances in developing vision-language models
like BLIP [9] and ALIGN [10]. Unfortunately, these models
heavily rely on text-based inputs, which poses challenges for
many languages that lack a written form [11].

Recent studies have proposed models that bypass text, but
they often rely on joint training of multiple components, result-
ing in increased complexity. For example, SAT [12] and Im2Sp
[13] involve training Image-to-Unit (I2U) and Unit-to-Speech
(U2S) models, while E-I2S [14] trains I2U with VQ-VAE.
To address this limitation, our research introduces PixVoxLM,
a novel Image-to-Speech (I2S) pipeline that enables end-to-
end training with a single component (I2U). To accomplish
this, we use an Encodec [4] model to convert audio into
discrete codes, and then employ a vision-language model to
learn the mapping between images and the discrete codes. This
is the first study to explore the potential of vision-language
models with neural audio codecs, which opens up significant
opportunities for unwritten languages as well as practical
applications, such as spoken image descriptions for individuals
with visual impairment. Additionally, this research introduces
a novel capability in the I2S model—visual-guided speech
completion. This feature has the potential to enable various
applications, including speech prompt-based instruction based
on image content.

Our contributions are as follows:

• To the best of our knowledge, this is the first study to
explore the potential of neural audio codecs using images
as input.



• We introduce PixVoxLM, a simple and efficient end-to-
end framework designed specifically for the I2S task.

• This is also the first study to explore a novel capability
of the I2S model for visual-guided speech completion.

II. RELATED WORKS

One notable breakthrough in I2S research was introduced
by Wei-Ning Hsu [12], who developed a method to convert
images to speech without using text. This approach used the
pre-trained ResDAVEnet-VQ [15] model to extract speech
units, and it trained two separate models: I2U and U2S. This
multi-model approach was further explored by Minsu Kim
et al. [13], who fine-tuned a pre-trained image captioning
model to enhance I2U performance, and Johannes et al. [14]
, who proposed a pipeline that trained both VQ-VAE [16],
[17] and I2U models simultaneously. However, these multi-
model approaches present two major challenges: joint training
of multiple components and the need to retrain all models
when speech-unit representations change. Xin-sheng Wang et
al. [18] addressed these issues with the Show and Speak
(SAS) model, a modified Tacotron2 [19] architecture that
uses image features extracted by a pre-trained Faster-RCNN
[20] to synthesize mel-spectrograms, which are then converted
into speech using a pre-trained neural vocoder, WavGlow.
However, this end-to-end approach struggles with performance
due to the limitations of Faster R-CNN, including missed
detections, misidentifications, challenges with overlapping ob-
jects, and inadequate contextual understanding.

Unlike previous work, ours is the first to use an off-the-
shelf audio codec model to extract discrete representations
and reconstruct them into speech. This simplifies I2S training
by focusing exclusively on the vision-language model. Addi-
tionally, the model uses a vision transformer to learn image
features end-to-end, reducing the need for external or hand-
crafted feature extraction. Experiments on the Flickr8k [21]
dataset show that our model is easier to train and infer while
also delivering promising results compared to existing I2S
methods. Furthermore, this research pioneers the exploration
of a new capability of the I2S model: visual-guided speech
completion. This capability allows the model to synthesize
speech based on both speech prompts and image inputs.

III. PROPOSED METHOD

A. Problem Formulation

To train an end-to-end I2S model, we formulate the problem
as follows, Fig. 1:

1) Speech Encoding and Reconstruction: To compress
speech into an intermediate discrete representation, we employ
an off-the-shelf neural Encodec [4] model that adheres to the
following conditions:

U = Encodec-Enc(S), (1)

Ŝ = Encodec-Dec(U), (2)

where S represents the input speech, U denotes the discrete
unit representation (or discrete codebook representation), and

Fig. 1. Overview of PixVoxLM: novel, simple, and efficient I2S pipeline

Ŝ indicates the reconstructed speech derived from the U
representation.

2) Image-to-Unit Mapping: The model processes an input
image I to generate an output Û . Initially, it transforms the
image into a visual hidden feature using an Image Encoder
Transformer. Subsequently, the Unit Decoder Transformer
adopts this feature to produce the final output Û .

Û = I2U-Transformation(I). (3)

After the model has learned to transform the input image
I into the discrete representation Û : P (Û |I), the next step
involves converting Û into speech. This is accomplished using
the Encodec-Dec model P (Ŝ|Û), as described in Equation (2).

B. Neural Encodec Model

In this study, we use EnCodec [4], an advanced con-
volutional autoencoder specifically designed for audio tok-
enization, to convert continuous audio signals into discrete
representations. EnCodec employs Residual Vector Quantiza-
tion (RVQ) to quantize the latent space into multiple hierar-
chical codebooks. This multi-codebook quantization enables
the model to effectively capture various details within the
audio signal, preserving both fine-grained and broader features
throughout the encoding process. By transforming audio into
discrete tokens, EnCodec achieves efficient compression while
maintaining a high level of fidelity in the reconstructed audio
output, making it well-suited for downstream tasks that depend
on discrete audio tokens.

Specifically, EnCodec takes an audio input S and com-
presses it into a lower-dimensional feature vector represen-
tation. These vectors are then quantized into integer vectors
in the RVQ layer. Ultimately, this process produces an integer
matrix representing the audio, denoted as U = [ukn], where
k represents the number of codebooks, which is four in our



study, and n is the frame step with a sequence length of
N . In this matrix, U [:, n] contains the four integer codes
corresponding to frame step n, while each column U [k, :]
reflects the length after quantization, with k ∈ [1 : 4].

C. Vision-Codec Language Model

1) Image Encoder: The image encoder begins by resizing
the input image to a fixed resolution and then divides it
into smaller patches. Each patch is then transformed into a
1D vector, and positional embeddings are added to preserve
the spatial relationships among the patches. These patch em-
beddings are processed through multiple Transformer layers,
which include components such as self-attention and feed-
forward layers. Finally, the image encoder produces a high-
level visual feature that serves as input for the decoding stage.

2) Unit Decoder: The decoder side consists of multiple
identical transformer layers, each comprising self-attention,
cross-attention, and feed-forward layers. The cross-attention
layer combines high-level visual feature with discrete unit
feature embeddings, allowing the model to learn the rela-
tionships between them effectively. The output of the last
decoder layer is then used to predict the discrete unit sequence,
corresponding to the image input.

3) Objective function: The objective function for the
vision-codec language modeling focuses on minimizing the
cross-entropy loss between the predicted unit sequence and
the ground truth labels across multiple codebooks. The total
loss L can be simplified as:

L =

K∑
i=1

N∑
n=1

−û log p(û|u), (4)

where K is the number of codebooks, N is the unit sequence
length, and p(û|u) is the predicted probability of the true token
û given the input u.

D. Codebook Patterns

This study employs two codebook representations: the paral-
lel pattern and the delay pattern, both inspired by the research
done for MusicGen [22] research and illustrated in Fig. 2. In
the parallel pattern, each frame step n contains four integer
codebooks, U [:, n], with a sequence length of N .

On the other hand, the delay pattern shifts each codebook
one step to the right, filling the resulting empty positions with
zeros. This staggering of codebooks introduces temporal de-
pendencies, enhancing the model’s ability to capture sequential
relationships. Note that during inference, the delay pattern
must be converted back into the parallel pattern.

IV. EXPERIMENT SETUP

A. Dataset

In this experiment, we adopt the Flickr8k dataset [21],
which is tailored for spoken captioning research. This dataset
contains 8,000 images, each paired with five spoken captions,
focusing on diverse scenes and everyday situations. While the
original dataset includes recordings from over 100 different

Fig. 2. Two methods of representing the codebook: parallel and delay pattern.

speakers, we reuse speech generated in the SAS study [18],
produced by a TTS model with a single speaker. The dataset
is divided into three subsets: 6,000 images for training and
1,000 images each for validation and testing.

B. Implementation Details

We employed a pre-trained BLIP [9] architecture for the
Vision-Codec language modeling. To optimize training ef-
ficiency and preserve the model’s image understanding ca-
pabilities, we froze the image encoder transformer and fo-
cused on fine-tuning the token language model. The trainable
parameters total 125 M out of the 211 M in the entire
model. We used 100 epochs, the AdamW [23] optimizer
with a learning rate of 5e-5, and a batch size of 60. Early
stopping was implemented to avoid overfitting if the validation
loss increased, and selected the checkpoint with the lowest
validation loss to assess the performance of the I2S model.

For the quantization model, we utilized a pre-trained 24-kHz
Encodec model1, trained on a diverse array of data, including
speech, audio, and music. We employed a bandwidth of 3
kbps, corresponding to a quantization codebook size K of 4.

C. Evaluation metrics

Evaluating the generated content of I2S models directly by
human assessment is a subjective and labor-intensive task. To
tackle this challenge, most studies use ASR models trained on
large datasets to transcribe speech into text and apply metrics
similar to those in image captioning. In this study, we employ
bilingual evaluation understudy BLEU (B) [24] with four n-
grams (B1, B2, B3, and B4) and other machine translation
metrics such as METEOR (M) [25], ROUGE-L (R) [26], and
CIDEr (C) [27], similar to metrics used in prior work: SAS
[18]. We compare the ASR model’s output with five ground
truths and calculate scores using the acc-metric library [28],
where higher scores indicate better caption quality. Although
these scores depend on the ASR model, we treat it as an

1https://github.com/facebookresearch/encodec



TABLE I
PERFORMANCE COMPARISON OF PIXVOXLM WITH EXISTING I2S

MODELS ACROSS VARIOUS EVALUATION METRICS

Methods B1↑ B2↑ B3↑ B4↑ M↑ R↑ C↑
Multiple-Model Training

SAT [12] - - - 11.60 14.10 39.00 23.20

SAT-FT [12] - - - 12.60 14.50 39.10 24.20

E-I2S [14] - - - 14.78 17.40 45.75 32.89

Single-Model Training

SAS [18] 29.60 14.70 7.20 3.50 11.30 23.20 8.00

PixVoxLM-Parallel 34.52 18.75 10.65 6.22 10.51 26.30 9.43

PixVoxLM-Delay 48.08 30.59 18.92 11.49 15.19 35.76 25.54

independent component of the I2S model, allowing us to focus
on improving the I2S model’s quality. The ASR model used
is a pre-trained Wav2Vec2 architecture, trained on 960 hours
of Libri-Light and Librispeech.

V. RESULTS AND DISCUSSION

A. Codebook Patterns and Model Comparison

1) Codebook Patterns: The results in Table I illustrate the
superior performance of the delay pattern in the PixVoxLM
model compared to the parallel pattern. Specifically, the delay
pattern achieves higher BLEU scores, such as B3 (18.92 vs.
10.65) and B4 (11.49 vs. 6.22). Additionally, improvements
in the M, R and C scores, with increases of 15.19, 35.76 and
25.54 respectively, highlight the delay pattern’s effectiveness
in capturing temporal dependencies crucial for generating
coherent and contextually accurate speech from visual data.

2) Model Comparison: The baselines we selected—SAT
[12], E-I2S5 [14], and SAS [18]—represent the most recent
methods available that exclusively use Flickr8k. Among these,
SAS serves as the primary end-to-end baseline and represents
the standard for comparison. PixVoxLM outperforms the end-
to-end SAS model in all evaluation metrics. Its performance
is competitive with multi-model training approaches like SAT
and SAT-FT, achieving scores that are nearly equivalent in
some cases. Notably, the PixVoxLM model with the delay
pattern closely matches the SAT on the B4 metric (11.49
vs. 11.60) and exceeds SAT and SAT-FT in the M and C
metrics. These results demonstrate that even with a single-
model training process, PixVoxLM delivers competitive per-
formance against models reliant on complex multi-model
training architectures.

B. Visual-guided speech completion

We evaluate the speech completion capabilities of our
models by providing speech prompts at varying levels of
completeness. Specifically, we test three scenarios: 0% (no
speech information), 25% (a quarter of the speech), and 50%
(half of the speech). Results in Table II show that PixVoxLM-
Delay consistently outperforms PixVoxLM-Parallel, especially
as the information ratio increases. At 50%, PixVoxLM-Delay
significantly improves B4, M, R, and C scores, demonstrating
superior prompt completion ability.

TABLE II
SPEECH PROMPT COMPLETION AT VARIOUS INFORMATION LEVELS

PixVoxLM Prompt B1↑ B2↑ B3↑ B4↑ M↑ R↑ C↑

Parallel

0% 34.52 18.75 10.65 6.22 10.51 26.30 9.43

25% 37.11 23.30 14.58 8.87 13.05 29.71 15.24

50% 46.26 34.00 26.25 20.42 20.54 40.83 37.64

Delay

0% 48.08 30.59 18.92 11.49 15.19 35.76 25.54

25% 49.76 34.18 23.04 14.90 18.00 39.04 32.68

50% 57.31 44.3 35.31 28.11 24.19 48.35 60.10

Fig. 3. Sample of speech generated using our proposal, PixVoxLM with delay
pattern. Note that the text transcript is generated using an off-the-shelf ASR
model. Images courtesy of Flickr8k.

C. Subjective Results

We selected several images along with the text transcripts
generated by the ASR model to conduct a deeper and more
thorough analysis of the results produced by the PixVoxLM
model with delay pattern. In Fig. 3-A, the generated output
is understandable in terms of content; however, the absence
of articles like “the” affects the overall score. In Fig. 3-B,
the output is generally good, but the spelling error “thre”
from the ASR model negatively impacts the overall quality. In
Fig. 3-C, the output is completely unintelligible, even though
some words from the ASR transcript appear in the Ground
Truth (GT). These cases highlight the need to improve the
I2S model’s performance in the future.

VI. CONCLUSION
The end-to-end PixVoxLM framework offers a simple and

efficient solution for generating speech directly from images
without relying on text as an intermediate step. Experimental
results on the Flickr8k dataset demonstrate that our model
outperforms the recent end-to-end SAS model. Furthermore,
we are the first to explore the model’s capability for visual-
guided speech completion. However, subjective evaluations
highlight several issues, particularly the intelligibility of the
generated speech. In future work, we will enhance the quality
of the ITS model to improve performance and broaden its
applicability across various datasets and real-world scenarios.
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[28] E. Labbé, “aac-metrics,” Mar. 2024. [Online]. Available:
https://github.com/Labbeti/aac-metrics/


