

From Pixels to Voice:

A Simple and Efficient End-to-End Spoken Image Description Approach via Vision Codec Language Models

Chung Tran - Sakriani Sakti Nara Institute of Science and Technology

Introduction

- Generative models in NLP excel in sequential input like VALL-E [1] (TTS), VioLa [2], LauraGPT [3] (audio generation)
- Challenge: Non-sequential input (Image) remains underexplored
- Application: Image-to-text/speech models can assist visually impaired people.
- Problem: Many languages lack standard writing systems [4], limiting text-based technology.

Related Works

Recent studies can describe images in speech → SAT[5], E-I2S [6], Im2p [7]: Train multiple components:

I2U + U2S or VQ-VAE + Vocoder

- → Show-and-Speak (SAS[8]) use Faster-RCNN
- + modified Tacotron2
- Limitation:
 - → Multi-component training is complex
 - → Depend on the external model to extract feature

Proposal Approach

- Use audio codec model to extract discrete representations and reconstruct it into speech
 - → Simplifies I2S training
 - + (single model-E2E).

Methodology

TABLE I PERFORMANCE COMPARISON OF PIXVOXLM WITH EXISTING I2S Models Across Various Evaluation Metrics

Methods	B1↑	B2↑	В3↑	B4↑	M†	R↑	C↑		
Multiple-Model Training									
SAT [12]	-	-	-	11.60	14.10	39.00	23.20		
SAT-FT [12]	-	-	-	12.60	14.50	39.10	24.20		
E-I2S [14]	-	-	-	14.78	17.40	45.75	32.89		
Single-Model Training									
SAS [18]	29.60	14.70	7.20	3.50	11.30	23.20	8.00		
PixVoxLM-Parallel	34.52	18.75	10.65	6.22	10.51	26.30	9.43		
PixVoxLM-Delay	48.08	30.59	18.92	11.49	15.19	35.76	25.54		

Result

- Delay Pattern performs better than Parallel Pattern
- PixVoxLM outperforms the end-to-end SAS model
- ❖ PixVoxLM (delay pattern) is better than SAT and SAT-FT in the M and C metrics.

										ı
k_1	u_1	u_2	u_3	u_4	u_5	u_6	•••	u_{n-1}	$oxed{u_n}$	
ဝူ k_2	u_1	u_2	u_3	u_4	u_5	u_6	•••	u_{n-1}	$oxed{u_n}$	Parallel
Codebooks k_3	u_1	u_2	u_3	u_4	u_5	u_6	•••	u_{n-1}	$oxed{u_n}$	el Pattern
k_4	u_1	u_2	u_3	u_4	u_5	u_6		u_{n-1}	u_n	ñ
	n_1	$\overline{n_2}$	$\overline{n_3}$	n_4	n_5	n_6	$\overline{n_{}}$	$\overline{n_{n-1}}$	n_n	
k_1	u_1	u_2	u_3		u_{n-1}	$oxed{u_n}$	0	0	0	
ဝူ k_2	0	u_1	u_2	u_3		u_{n-1}	u_n	0	0	Delay
Codebooks k_3	0	0	u_1	u_2	u_3		u_{n-1}	$oxed{u_n}$	0	Pattern
$oldsymbol{k}_4$	0	0	0	u_1	u_2	v_3		u_{n-1}	u_n	
	n_1	n_2	n_3	n_4	$n_{}$	n_n	n_{n+1}	n_{n+2}	n_{n+1}	3
Sequence Length										

Speech Encoding and Reconstruction

U = Encodec - Enc(S)

 $\hat{S} = Encodec - Dec(U)$

Image-2-Unit (I2U) Mapping

 $\widehat{U} = I2U(I)$

Objective function:

$$L = \sum_{i=1}^{k} \sum_{n=1}^{N} \hat{u} \log p(\hat{u}|u)$$

GT: Two dogs play in the grass

in grass

[8] Xinsheng Wang et al, Show and Speak: Directly Synthesize Spoken Description of Images

GT: Three children playing in sand at beach ASR: Two dogs running ASR: Thre children playing in the sand

GT: A man climbs icy rocks ASR: Clamber or climbing a neste

TABLE II Speech Prompt Completion at Various Information Levels

PixVoxLM	Prompt	B1↑	B2 ↑	B3↑	B4↑	M↑	R↑	C↑
Parallel	0%	34.52	18.75	10.65	6.22	10.51	26.30	9.43
	25%	37.11	23.30	14.58	8.87	13.05	29.71	15.24
	50%	46.26	34.00	26.25	20.42	20.54	40.83	37.64
Delay	0%	48.08	30.59	18.92	11.49	15.19	35.76	25.54
	25%	49.76	34.18	23.04	14.90	18.00	39.04	32.68
	50%	57.31	44.3	35.31	28.11	24.19	48.35	60.10

- Use image and partial speech inputs for more accurate and context-aware completions.
- Delay pattern have better result than Parallel

Conclusion

- PixVoxLM offers a simple and efficient solution for generating speech directly from images
- PixVoxLM outperform the recent end-to-end SAS model

Future work

- Subjective evaluations highlight several issues
- Need to improve the performance

- [2] Tianrui Wang et al, VioLA: Unified Codec Language Models for Speech Recognition, Synthesis, and Translation [3] Zhihao Du et al, LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
- [4] Gilles Adda et al, Breaking the Unwritten Language Barrier