From Pixels to Voice: A Simple and Efficient
End-to-End Spoken Image Description
Approach via Vision Codec Language Models

Author: Chung Tran! - Sakriani Saktit

1 Nara Institute of Science and Technology (NAIST), Japan




& Scieng, .
®
2 S

®, o
* NpIST®

Outline

Introduction
Related Works
Methodology
Results
Conclusion

ok~ Wb E

Chung Tran / ICASSP-2025 2



Introduction & Related Work



$
* NpIST®

Introduction

Recently, generative models in NLP have extended/applied to speech
processing tasks (TTS)
By using speech tokenizer (e.g. Encodec[1])

Speech signal (raw) =» Speech Unit =» Speech signal (reconstruction)
Methods:

- Standard: Phoneme =» Mel-spectrogram =» Speech (Tacotron2, Fastspeech?)
> New: Phoneme =» Speech Unit = Speech (VALL-E, VALL-E X)

[1] Alexandre Défossez et al, High Fidelity Neural Audio Compression

Chung Tran / ICASSP-2025
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Introduction

<+ VIioLA[2], LauraGPT[3] has extended the new concept to perform many speech
processing tasks
- Audio generation, speech generation, speech translation
< While these models excel in processing sequential inputs such as text or speech
> Processing non-sequential data, like images, remains underexplored
< Human communication involves not only text, and speech but also images
+ The model that takes images as input and outputs text/speech can be applied to
many applications:
- Helping visually impaired people understand their surroundings
<+ However, many languages do not have standardized writing systems [4]
- Limits the applicability of text-based technologies

[2] Tianrui Wang et al, VioLA: Unified Codec Language Models for Speech Recognition, Synthesis, and Translation
[3] Zhihao Duetal, LauraGPT: Listen, Attend, Understand, and Regenerate Audio with GPT
[4] Gilles Adda et al, Breaking the Unwritten Language Barrier
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Related Works

Recent studies (SATI[5], E-12S[6], Im2Sp[7]) have proposed models that can describe
Images in speech without using text representation
These studies need to train multiple components
- Image-to-Unit (12U) + Unit-to-Speech (U2S) [SATI[5], Im2Sp[7]]
- Image-to-Unit (12U) + VQ-VAE + Vocoder [E-12S[6]]
Limitation:
- Train multiple components =» increase complexity
- Retrain all models if speech-unit changes
Show-and-Speak (SAS[8]) use a pretrained Faster-RCNN + a modified Tacotron2 (E2E)
> Depend on the external model to extract feature (36 objects)
- Performance is low due to limitation of Faster-RCNN (missed detection, misidentifications)

[5] Wei-Ning Hsu et al, Text- Free Image-to-Speech Synthesis Using Learned Segmental Units

[6] Johanes Effendi et al, End-to-end image-to-speech generation for untranscribed unknown languages

[7]1Minsu Kim et al, Towards practical and efficientimage-to-speech captioning with vision-language pre-training and multrmodal tokens
[8] Xinsheng Wang et al, Show and Speak: Directly Synthesize Spoken Description of Images

Chung Tran / ICASSP-2025
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Proposal Approach

Ours is the first use an off-the-shelf audio codec model to extract discrete
representations and reconstruct it into speech

> Simplifies 12S training by focusing exclusively on the vision-language model.
Ours use vision transformer to learn feature end-to-end, reducing the need
for external or hand-crafted feature extraction.

Experiments on the Flickr8k dataset:
- Our model is easier to train and infer
- Delivering promising results compared to existing 12S methods.

Chung Tran / ICASSP-2025
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Problem Formulation

« Step 1: Speech Encoding and
Reconstruction
U = Encodec — Enc(S)
S = Encodec — Dec(U)
« Step 2: Image-2-Unit (12U) Mapping
U=12U(

Train only 12U
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Neural Encodec

A model that can convert audio signals into discrete representations, and
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Calsbrating Signal Processing

Neural EnCOdeC ki uwy | us | us  uq4 U5 Ug Un—1/| Uy
Qky ur uz uz u4s U5 | Ug Un—1| Un
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[9] Jade Copet et al, Simple and Controllable Music Generation
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Vision-Codec Language Model

« Image Encoder
« Unit Decoder
« Objective function:

> L= XL Xh-1tlogp(afu)
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Experiment setup

« Dataset: Flickr8k (8000 images)
- 6000 for training, 1000 for validation and 1000 for test
- Each image has five spoken captions
« Experiment setup
- Vision-Codec Language Model: BLIP model
- The trainable parameters 125M out of 211M
- Learning Rate: 5e-5, batchsize=60

Chung Tran / ICASSP-2025
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Result
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Delay Pattern performs better than
Parallel Pattern

PixVoxLM outperforms the end-to-
end SAS model

PixXVoxLM (delay pattern) is better
than SAT and SAT-FT inthe Mand C
metrics.

TABLE I
PERFORMANCE COMPARISON OF PIXVOXLM WITH EXISTING 128
MODELS ACROSS VARIOUS EVALUATION METRICS

Methods | B11 \ B2t \ B3t \ B4+ \ Mt \ Rt \ ct
Multiple-Model Training

SAT [12] - - - 11.60 | 14.10 | 39.00 | 23.20

SAT-FT [12] - - - 12.60 | 14.50 | 39.10 | 24.20

E-12S [14] - - - 1478 | 17.40 | 45.75 | 32.89
Single-Model Training

SAS [18] 29.60 | 1470 | 720 | 350 | 1130 | 23.20 | 8.00

PixVoxLM-Parallel | 34.52 | 18.75 | 10.65 | 622 | 10.51 | 2630 | 9.43

PixVoxLM-Delay | 48.08 | 30.59 | 1892 | 1149 | 15.19 | 35.76 | 25.54

Chung Tran / ICASSP-2025 15
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Visual-guided speech completion

TABLE II
SPEECH PROMPT COMPLETION AT VARIOUS INFORMATION LEVELS

< Use image and partial speech inputs PivorlM | Trommt | BIF | 820 | 837 [ 841 [ 3r | &F | o
for more accurate and context-aware 0% 3452 | 1875 | 10.65 | 622 | 10.51 | 2630 | 9.43
completions. Parallel 25% | 37.11 | 23.30 | 14.58 | 887 | 13.05 | 29.71 | 15.24

50% | 4626 | 34.00 | 2625 | 2042 | 20.54 | 40.83 | 37.64

@ DEIay pattern have better result than 0% 48.08 | 30.59 | 18.92 | 11.49 | 15.19 | 3576 | 25.54

Parallel Delay 25% | 49.76 | 34.18 | 23.04 | 1490 | 18.00 | 39.04 | 32.68
50% | 5731 | 443 | 3531 | 28.11 | 24.19 | 4835 | 60.10

Chung Tran / ICASSP-2025 16
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Example

A

GT: Two dogs play in
the grass

GT: Three children
playing in sand at beach

ASR: Two dogs running  ASR: Thre children

in grass

playing in the sand

Chung Tran / ICASSP-2025

GT: A man climbs icy
rocks

ASR: Clamber or
climbing a neste
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Conclusion & Future work

« Conclusion
> PixVoxLM offers a simple and efficient solution for generating speech directly
from images
> PixVoxLM outperform the recent end-to-end SAS model
« [Future work
- Subjective evaluations highlight several issues
- Need to improve the performance

Chung Tran / ICASSP-2025

19



Thank for your attention

20



	Default Section
	Slide 1: From Pixels to Voice: A Simple and Efficient End-to-End Spoken Image Description Approach via Vision Codec Language Models
	Slide 2: Outline
	Slide 3: Introduction & Related Work
	Slide 4: Introduction
	Slide 5: Introduction
	Slide 6: Related Works
	Slide 7: Proposal Approach
	Slide 8: Methodology
	Slide 9: Problem Formulation
	Slide 10: Neural Encodec
	Slide 11: Neural Encodec
	Slide 12: Vision-Codec Language Model
	Slide 13: Results
	Slide 14: Experiment setup
	Slide 15: Result
	Slide 16: Visual-guided speech completion  
	Slide 17: Example
	Slide 18: Conclusion
	Slide 19: Conclusion & Future work
	Slide 20: Thank for your attention


